## Zener Diode Notation

To distinguish a zener diode from conventional junction diodes, we use a modified diode symbol:


Generally speaking, a zener diode will be operating in either breakdown or reverse bias mode.

For both these two operating regions, the cathode voltage will be greater than the anode voltage, i.e.,:

$$
v_{0}<0 \quad \text { (for r.b. and bd) }
$$

Likewise, the diode current (although often tiny) will flow from cathode to anode for these two modes:

$$
i_{0}<0 \quad(\text { for r.b. and bd) }
$$

Q: Yikes! Won't the the numerical values of both io and $v_{0}$ be negative for a zener diode (assuming only rb and b.d. modes).



* In other words, for a Zener diode, we denote current flowing from cathode to anode as positive.
* Likewise, we denote diode voltage as the potential at the cathode with respect to the potential at the anode.

Note that each of the above two statements are precisely opposite to the "conventional" junction diode notation that we have used thus far:

$$
v_{Z}=-v_{D} \quad \text { and } \quad i_{Z}=-i_{D}
$$






Two ways of expressing the same junction diode curve.

The $i_{z}$ versus $v_{z}$ curve for a zener diode is therefore:


Thus, in forward bias (as unlikely as this is):

$$
i_{Z}=-I_{s} \exp \left(\frac{-v_{Z}}{n V_{T}}\right)
$$

or approximately:

$$
v_{z} \approx-0.7 \vee \text { and } i_{z}<0
$$

Likewise, in reverse bias:

$$
i_{z} \approx I_{s} \quad \text { and } \quad 0<v_{z}<V_{Z K}
$$

And finally, for breakdown:

$$
i_{z}>0 \quad \text { and } \quad v_{z} \approx V_{Z K}
$$

